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Small-scale variation of convected quantities like 
temperature in turbulent fluid 

Part 1. General discussion and the case of small conductivity 

By G. K. BATCHELOR 
Cavendish Laboratory, University of Cambridge 

(Received 1 June 1958) 

When some external agency imposes on a fluid large-scale variations of some 
dynamically passive, conserved, scalar quantity 0 like temperature or concentra- 
tion of solute, turbulent motion of the fluid generates small-scale variations of 0. 
This paper describes a theoretical investigation of the form of the spectrum of 
0 at large wave-numbers, taking into account the two effects of convection with 
the fluid and molecular diffusion with diffusivity K .  Hypotheses of the kind made 
by Kolmogoroff for the small-scale variations of velocity in a turbulent motion 
at high Reynolds number are assumed to apply also to small-scale variations of 0. 

Previous contributions to the problem are reviewed. These have established 
that the spectrum of 0 varies as n-* (n being wave-number) at the low wave- 
number end of the equilibrium range, but there has been some confusion about 
the wave-number marking the upper end of the range of validity of this relation. 
The existence of a conduction ‘cut-off’ near n = (e//c3)* as put forward by 
Obukhoff and Corrsin is shown to hold only when v Q K,  and that near n = ( E / v K ~ ) *  

put forward by Batchelor is shown to apply only when v > K .  In  the case v Q K ,  

the remaining problem is to determine the form of the spectrum of 8 beyond the 
conduction cut-off; this is done in Part 2. In the case v K ,  the conduction cut-off 
occurs at wave-numbers much higher than (e/v3)*, which is where the energy 
spectrum is cut off by viscosity, and where the spectrum of 0 ceases to vary as n-8. 

The form of the spectrum of 0 in this latter case is determined over the range 
n > (e/v3)& by analysing the effect of the velocity field, regarded as effectively a 
persistent uniform straining motion for these small-scale variations of 8, and of 
molecular diffusion on a single Fourier component of 8. The wave-number of this 
sinusoidal variation of 8 is changed (and generally increased in magnitude) by the 
straining motion and the amplitude is diminished by diffusion. By supposing that 
the level of the spectrum of # is kept steady at wave-numbers near (e/v3)k by some 
mechanism of transfer from lower wave-numbers, the linearity of the equation 
for 8 then allows the determination of the spectrum for n > (e/v3)4, the result 
being given by (4.8). The same result is obtained, using essentially the same 
approximation about the velocity field, from a different kind of analysis in terms 
of velocity and 0 correlations. Finally, the relation between this work and 
Townsend’s model of the small-scale variations of vorticity in a turbulent fluid is 
discussed. 
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1. Introduction 
When the temperature of a fluid in turbulent motion is not uniform (although 

with such small variations that buoyancy forces are negligible), the temperature 
field is made random by the irregular movements of the fluid and acquires 
statistical properties which are directly related to those of the turbulent motion. 
Quite apart from its intrinsic interest as an aspect of a general study of turbulence, 
the distribution of temperature, and of other similarly conserved scalar physical 
quantities, in a turbulent fluid has a direct bearing on a number of problems in 
geophysics, mostly concerned with the scattering of either sound or electro- 
magnetic waves. In  these scattering problems it often happens, for extraneous 
reasons concerned with the choice of wavelength of the waves concerned, that 
the small-scale structure of the distribution of temperature (or whatever quantity 
is responsible for the variations in refractive index) is of particular interest. This 
is a fortunate circumstance, because these small-scale components may be ex- 
pected, on the basis of arguments parallel to those used in Kolmogoroffs theory, 
to have a measure of universality and to have statistical properties which depend 
only weakly on the large-scale features of the distribution. It is probable that 
considerations of the fine structure of the distribution of quantities like tempera- 
ture also have a bearing on industrial problems concerned with the mixing of one 
fluid in another of approximately the same density by means of turbulent motion. 
This paper will give a theoretical discussion of the small-scale components of 
quantities like temperature, ‘small’ being taken here to mean that the com- 
ponents concerned have characteristic length-scales small compared with the 
length-scale of the eddies containing the bulk of the kinetic energy of the turbulent 
motion, without regard for any of the possible applications of the results. 

The dominant feature of the action of the turbulent motion on the temperature 
distribution is a continual reduction of the length-scale of temperature variations. 
The random convection of material elements of the fluid is inevitably accom- 
panied by distortion of these elements, and, in the absence of molecular conduc- 
tion, a (statistical) increase in the gradients of temperature. This process was 
described clearly by Obukhoff (1949), and has been analysed in terms of the way 
in which surfaces of constant temperature are increased in area and brought closer 
together (Batchelor 1952). Unless temperature variations on some definite 
length-scale are supplied continually by some external agency, the statistical 
properties of the temperature distribution cannot be exactly steady; however, 
the properties of the small-scale components of the temperature distribution will 
be approximately steady in general, because the process of convective distortion 
and increase of temperature gradients takes place much more quickly than the 
over-all decay of the temperature field. The continual increase in the magnitude 
of temperature gradients due to random convection will ultimately be checked by 
the smoothing action of thermal conduction, and no further refinement of the 
temperature distribution can occur; in this way, a length-scale characterizing the 
smallest temperature ‘eddies ’ is determined. 

There are only two properties of the quantity temperature which are relevant 
to these mechanical processes. One is the property of invariance of the tempera- 
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ture of a material element of fluid in the absence of molecular conduction; the 
other is that the temperature is subject to molecular conduction characterized by 
a diffusivity K (of dimensions velocity by length). In  these respects, temperature 
is no different from many other physical quantities, such as water-vapour content 
of air, salt concentration of water, and electron density in the ionosphere, 
although the numerical values of K will be different in each case. To the extent 
that they do not depend on special values of K, all the remarks and results of this 
paper will apply to all such dynamically passive conserved scalar quantities, the 
terminology associated with the typical case of temperature being employed 
sometimes for conciseness. 

The problem to be studied is thus as follows. A quantity O(x, t )  has a distribu- 
tion in the fluid which is governed by the equation 

a8 
-+u.ve = KVV, (1 .1 )  at 

where u is the velocity of the fluid and is independent of 8. The fluid, taken as 
incompressible, is in turbulent motion at high Reynolds number, and the length- 
scale characterizing the energy-containing eddies is L. We wish to determine the 
statistical properties of those components of the spatial distribution of 8 that 
have a length-scale small compared with L, and in particular to determine the 
wave-number spectrum of the distributionof 8. This is a familiar kind of objective 
in the theory of turbulence, although not one which is often achieved con- 
vincingly. It will be shown that a reasonably complete description of the 
spectrum of 6' can be obtained, partly by the use of simple new ideas and partly 
by the use of old ideas in a new context, this success being made possible by the 
linearity in 6' of all terms in (1 .1) .  No measurements appear to be available for 
comparison with the theoretical results. 

2. Previous work on the problem 
The few published contributions that bear directly on the problem need to be 

described before the new work is presented. The first relevant papers seem to be 
those in which Obukhoff (1949; see also Yaglom 1949) and Corrsin (1951) pointed 
out the primary features of the effect of random convection on the spatial distri- 
bution of 8. These authors realized that the general increase of gradients of 6' 
accompanying the irregular stirring action of the turbulence, which is a conse- 
quence of the quadratic term in (1. l) ,  can also be thought of as a transfer between 
different Fourier components of the distribution of 6'. If both u and 6' are written 
in the form of Fourier integrals, the term u . V 8  leads to the generation of new 
harmonic components of 8, and in particular to the growth of components of 
ever-increasing wave-number . This effective transfer from Fourier components 
of the 8-distribution at low wave-number to those at high wave-number is 
mathematically similar to that which acts on the turbulent velocity distribution, 
and Obukhoff and Corrsin made the plausible assumption (which will also be 
adopted here) that the hypotheses of Kolmogoroff's universal equilibrium theory 
apply equally well to the &distribution as to the u-distribution. The arguments 
in favour of this extension of Kolmogoroffs hypotheses to apply to a temperature 

8-2 
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distribution need not be given, since they are identical in form with, and neither 
stronger nor weaker in rigour than, those well-known arguments concerning the 
velocity distribution. 

On the basis of these hypotheses, and with the assumptions that the Reynolds 
number of the turbulence is sufficiently high and that there are no external 
sources of variations of 8 on a small length-scale, the statistical properties of the 
small-scale components of the &distribution are homogeneous, isotropic and 
steady, irrespective of the properties of the components with length-scale of the 
order of L. Moreover, owing to the dependence of the distribution of B on that of 
u, the components of the O-distribution having these properties will be defined by 
the same condition as the components of the u-distribution having the same 
properties, namely, that their linear size is small compared with L;  the two 
distributions have a common 'equilibrium range' of wave-numbers. It is thus 
possible to define a spectrum function for the (small-scale components of the) 
spatial distribution of B as 

A(n)  = ~ S(r)e-in.r dr, (2.1) 
am3 's 

where n is the vector wave-number and X ( r )  = 88' = O(x) B(x + r) is the covari- 
ance of 8 as a function of position (8 being taken as zero for convenience). In  view 
of the isotropy, A and S are functions of the magnitudes n and r alone, and the 
spectrum function giving the distribution with respect to wave-number magni- 
tude is 

F(n) = 4nn2A(n) = - X(r )  r sinnr dr; (2.2) 
2n 7r !ow 

it follows from the transform of (2.1) that 

The statistical properties of the small-scale components of the O-distribution 
are also independent of the detailed form of the properties of the large-scale 
components, according to the usual hypotheses,* and are affected by these large- 
scale components only inasmuch as the latter determine the magnitude of the 
rate of transfer from large-scale to small-scale components. In  order to see 
exactly what is being transferred between different parts of the @-spectrum, it is 
necessary to note only that the quadratic term in (1.1) makes no contribution to 
a@/at. Thus, when one Fourier component of the O-distribution is changed by 
interaction between the 6 and u fields, other Fourier components are changed 
simultaneously in such a way that the sum of the (necessarily independent) con- 
tributions to 82 from all Fourier components remains the same. This shows that 
what is transferred across the &spectrum, and conserved while being transferred, 
when the turbulent motion distorts the temperature distribution, is a contribu- 
tion to @ from Fourier components; for lack of a suitable word, let us call it 
(?-stuff. 

Following the usual line of argument of the Kolmogoroff theory, we now 
suppose that the diffusivity K is so small as to make the effect of conduction 

* Which, however, are now challenged by Kraichnan (1958, 1959). 

- 
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negligible for some of the Fourier components (namely, those at the small wave- 
number end of the range) comprising the group whose statistical properties are 
steady and isotropic. The part of the equilibrium range of wave-numbers for 
which the Fourier components of the u-distribution are independent of viscosity 
is usually termed the ‘inertial subrange ’, and an appropriate term for the part of 
the equilibrium range for which the Fourier components of the 8-distribution are 
independent of molecular diffusion is the ‘convection subrange ’. No actual 
destruction of @-stuff takes place at wave-numbers in, or smaller than those in, 
the convection subrange; all the destruction takes place at higher wave-numbers 
as a result of the action of molecular diffusion, the total rate of destruction of the 
B2-stuff in unit volume of fluid being 
- 

~ __ 
3 K O V 2 8  = - 2 ~ ( V 8 ) 2  = - x, say. (2.3) 

We assume that, as in the case of the dissipation of kinetic energy by viscosity, the 
value of x is determined by statistical interaction of the Fourier components of u 
and 8 each with wave-numbers of order L-1, and is a ‘given’ quantity so far as 
considerations of the small-scale components alone are concerned. 

Thus the mean rate at which @-stuff is transferred from wave-numbers smaller 
than, to wave-numbers larger than, any wave-number in the convection sub- 
range, per unit volume of the fluid, is x, and this is one of the parameters on 
which the form of the 8-spectrum in the convection subrange depends. The only 
other parameters on which the &spectrum in the convection subrange can depend 
are those which determine the Fourier components of the velocity distribution in 
the equilibrium range of wave-numbers, that is, the total rate of viscous dissipa- 
tion of kinetic energy per unit mass of fluid, E, and the kinematic viscosity v. 
Provided the Reynolds number of the turbulence is so large that viscous effects, 
as well as conduction effects, are unimportant at at least some of the wave- 
numbers in the convection subrange, dimensional requirements lead to 

r(n) cc XE-4n-Q (2.4) 

for n L-1 and n less than some upper limit yet to be determined. Thus the 
&spectrum here has the same dependence on n as the u-spectrum in the 
inertial subrange, namely, 

E(n)  cc eb-5,  (2 .5 )  

as was demonstrated by Obukhoff (1949) and independently by Corrsin (1951). 
A relation different from (2.4) has been put forward by Inoue (1950, 1951, 

1952). Inoue appears to have thought of the various components, of different 
linear dimensions, into which the temperature distribution is resolved as being 
physical entities, and of the conserved quantity which is transferred between 
different components as a result of the stirring motion of the fluid as being heat- 
or, equivalently, since the fluid is of uniform heat capacity per unit volume, 
temperature. A dimensional argument like that leading to (2.4), but using a 
quantity specifying a rate of heat transfer in place of x, then gives r(n) 85: 
proportional to n-8. This argument of Inoue’s does not seem to  be sound; the 
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‘components’ of a random spatial field are not entities relating to different 
portions of the fluid but are (or, at any rate, should be, if the concept is to be self- 
consistent) different members of an appropriate set of orthogonal functions. In 
his discussion of a temperature field Obukhoff (1949) pointed out that, for small 
fluctuations about the mean, @ is a measure of the deficiency of entropy of the 
fluid relative to a state in which the temperature is uniform with the same mean 
value, and that this supplies a physical interpretation of the @-stuff that is 
transferred across the spectrum. However, all that is strictly relevant to the 
above argument is that the value of 0 for a material particle is unchanged by 
convection and that the different Fourier components of the distribution of 0 
make independent contributions to @. 

The papers by Obukhoff, Corrsin and Inoue, already referred to, appear to be 
the only published works on the form of the @-spectrum in the equilibrium range 
of wave-numbers, apart from a rather unplausible suggestion by Villars & 
Weisskopf (1955) that [(0-0‘)2]* is proportional to r and to the gradient of 8 
when conduction is unimportant. (The simple mixing process on which this 
suggestion is based is sound enough in itself, but I think the authors have over- 
looked the fact that the part of the fluctuating gradient of 0 due to components 
with length-scale larger than r is much larger than the mean gradient of 0, and 
that the magnitude of this fluctuating gradient determines (0 - 0’)2.) Obukhoff 
and Inoue gave expressions for the 0-spectrum only in the convection subrange. 
Corrsin obtained (2.4), like Obukhoff, and noted further that if one supposes the 
transfer across both the 0-spectrum and the u-spectrum to be representable 
mathematically as an eddy diffusion process in the manner suggested by von 
Weizsacker and Heisenberg, with the smaller-scale components of u acting as the 
transfer agent for the larger-scale components of both 0 and u, then both the 
0-spectrum function F(n) and the u-spectrum functionE(n) are proportional ton-’ 
at large wave-numbers beyond both the viscous and conduction cut-off wave- 
numbers. Since Corrsin’s paper was published, the von Weizsacker-Heisenberg 
hypothesis has come to be regarded, on both deductive and empirical grounds, 
as of doubtful value for predictions about the u-spectrum over the part of 
the equilibrium range for which viscous effects are important, and consequently 
the above prediction about the 0-spectrum is not now convincing. 

The position is thus that the form of the 0-spectrum in that part of the equi- 
librium range in which neither viscous forces nor conduction effects are im- 
portant is reasonably well established (assuming, as is done here, that the 
Kolmogoroff theory in general is reasonably well established), but that the form 
at larger wave-numbers is not known. 

The range of validity of (2.4) 

Obukhoff (1949) and Corrsin (1951) have also said something about the 
magnitude of the wave-number marking the upper end of the range of vdidity of 
the relation (2.4) for the 0-spectrum. Obukhoff remarked that the relation (2.4)) 
for the stated range of wave-numbers, is equivalent to a relation 
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valid for r < L and for r bounded below in some way as yet unknown, and that 
when r is sufficiently close to zero there is available the exact relation (see (2.3)) 

Equations (2.7) and (2.6) are asymptotic relations valid for ‘small’ and ‘large’ 
values of r respectively (the ‘large ’ values being subject to the restriction r < L).  
Obukhoff argued that the two ranges of r concerned will be contiguous, in which 
case the dividing value of r will be given approximately by the solution of 

(the constant of proportionality in (2.6) being assumed as usual to be of order 
unity). Thus Obukhoff’s conclusion is that (2.6) is valid for ( K ~ / S ) &  Q r Q L, or, 
equivalently, that the relation (2.4) for the 8-spectrum is valid for 

L-’ < 12 < ( € / K 3 ) i .  (2.8) 

Corrsin’s argument is apparently different in form, but leads to the same 
conclusion. He supposed that the relation (2.4) ceases to be valid when n is SO 

large that the effect of molecular diffusion becomes important, and that this will 
happen when the PBclet number appropriate to the Fourier components of the 
8-distribution with wave-number n becomes of order unity. The PBclet number 
in general is a measure of the ratio of convection to conduction effects, and Corrsin 
assumes this measure to be given by E * / ( ~ * K ) ,  with the u-spectrum function E(n) 
having the inertial subrange form (2.5). The conclusion is that conduction effects 
render (2.4) invalid when n is of order ( B / K ~ ) * ,  in agreement with Obukhoff. 

The inertial subrange, within which the relation (2 .5)  for the u-spectrum holds, 
is known to be specified by L-1 < n 4 (e/v3)4. Obukhoff and Corrsin thus hold 
that the variations of the 8 and u-spectra as n-Q are cut off, in the sense that at 
higher wave-numbers the two spectra begin to fall off more rapidly as a result of 
molecular diffusion being important, at wave-numbers whose ratio is given, to 
order of magnitude, by ( v / K ) ~ .  The two arguments from which this result was 
found seem acceptable when v and K are of the same order of magnitude, or when 
v < K ,  but I do not think they can be expected to hold when v 9 K. When v K ,  

the effect of viscosity on the u-spectrum becomes important at wave-numbers 
lower than those at which conduction first affects the 8-spectrum, and so the 
8-spectrum is dominated by convection processes at wave-numbers up to and 
beyond the largest wave-number for which (2.5) is valid. There is a limitation in 
Obukhoff’s argument inasmuch as he assumes that (2.4) is valid for all wave- 
numbers less than that at which conduction becomes important (expressed as 
contiguity of the ranges for which (2.6) and (2.7) are valid); this is not likely to be 
a valid assumption when v K,  because the neglect of v in the dimensional 
argument on which (2.4) was based is not then permissible for the higher wave- 
numbers in this range. Corrsin’s argument is limited in effectively the same way, 
in that he employs (2 .5 )  to evaluate the PBclet number appropriate to Fourier 
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components for wave-numbers which, when u K ,  are so large as to be beyond 
the range for which the inertial subrange relation ( 2 . 5 )  is valid. 

In  another paper which is relevant in this connexion (Batchelor 1952), the 
effect of molecular diffusion on the distribution of 0 was regarded as a kind of 
perturbation of the effect of convection. When K is zero, the surfaces of constant 
8 move as material surfaces and convective extension of these surfaces, with 
consequent decrease of their distance apart, leads to an increase in (VO)z at an 
(asymptotic) rate of order (w2)4 (VBjZ (where (w")& is the root-mean-square 
vorticity and is a measure of the mean rate of extension of material lines). If now 
a small molecular diffusivity is introduced, and if the effect of convection is not 
changed in form by the existence of the conduction, the value of (V6)2 can be 
stationary only if the two terms in the expression for the rate of change of (V8)2 
(obtained in the usual way from (1 .1)) ,  namely, 

__ 

_ _ _ _  

__ 

__ 

_ _ ~  
(w2)* (VO)z and K ( V 8 ) .  V(V28), 

are of the same order. On assuming that the values of these two weighted inte- 
grals of the O-spectrum are determined by the wave-number at  which the 
spectrum begins to fall off very rapidly as a result of conduction effects, we find 
that this wave-number must be of order (S)&/K*, that is, of order ( ~ / u K ~ ) & .  

There is an apparent disagreement between this result and that obtained by 
Obukhoff and Corrsin, and at the time when my own paper was written I thought 
the conflict was real. However, I see now*-and the work to be described in the 
following sections will amplify the explanation-that each result is correct in its 
own context. Obukhoff and Corrsin found that conduction effects cut off the 
O-spectrum at a wave-number of order ( e / ~ ~ ) & ;  in finding this expression for the 
cut-off wave-number they assumed that one or other of the relations (2.4) and 
( 2 . 5 )  is valid up to this cut-off wave-number, and, as shown above, this is likely 
to be permissible only when Y < K or when U / K  is of order unity. My work, on the 
other hand, assumes that the mechanics of the convection process is not changed 
by the existence of conduction and, in particular, that the distance between 
surfaces of constant 8 is decreased by convection at a rate which is of the same 
order as that for material surfaces; this will be valid, when applied to a considera- 
tion of particular Fourier components of the 8-distribution, only when the wave- 
numbers concerned lie beyond the range in which the stretching effect of the 
velocity field lies, that is, only when the conduction cut-off of the 8-spectrum 
lies well beyond the viscous cut-off of the u-spectrum, that is, finally, only when 
K << u. The two different expressions for the wave-number at which the conduc- 
tion cut-off occurs reduce to the same form when u / K  is of order unity. 

The position, as now seen after this discussion of previous work, is briefly as 
follows. With the usual proviso that the Reynolds number of the turbulence is 
large, it may be expected that the 0-spectrum has a form depending only on 
e, x, u and K in the equilibrium range specified by the condition n L - I .  Pro- 
vided K and u are both so small that some of the Fourier components of 8 and u in 
this range are unaffected by conduction and viscous forces respectively, the 

* Helped by some valuable discussions with Mr I. D. Howells. 
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@-spectrum has the form (2.4) for n 9 L-l and n small compared with some wave- 
number which depends on the ratio V / K .  When v << K,  the convection subrange 
is not as extensive as the inertial subrange and is specified by L- l4  n < ( E / K ~ ) ~ .  

When V / K  is of order unity, the convection and inertial subranges may be expected 
to be of comparable extent and to be specified by L-l< n < (e/v3)%. In  both these 
cases the 0-spectrum falls off more rapidly than as n-4 at the end of the convection 
subrange as a consequence of Conduction becoming important. When v & K ,  

convection effects dominate the @-spectrum at wave-numbers beyond the inertial 
subrange and conduction does not become important until wave-numbers of 
order ( E / V K ~ ) &  are reached; thus in this case there are two distinct parts to the 
convection subrange. In  the part at the lower wave-number end, in convection 
subrange A say, specified by L-l << n < (e /v3) i ,  the relations (2.5) and (3.4) hold; 
at the higher wave-number end, in convection subrange B specified by 

(e/v3)& << n << ( E / v K ~ ) ~ ,  

neither (2 .5)  nor (2.4) holds because viscosity has an effect on the u-spectrum. 
Part of the purpose of this paper is to review past work, to clear up some real 

and apparent conflicts and to assess the conditions under which the available 
results may be expected to be valid; this has now been done. The other intention 
is to complete the picture just described by obtaining expressions for the 
@-spectrum in ranges where none is available. 

3. The cases v < K and V / K  is of order unity 
When v << K ,  the @spectrum has the form (2.4) over the entire convection 

subrange, and begins to  fall off more rapidly at wave-numbers near ( E / K ~ ) *  as 
a result of the effect of conduction. The remaining problem here is to determine 
the shape of the @-spectrum in the neighbourhood of, and beyond, the conduction 
cut-off wave-number ( E / K ~ ) ~ ,  and in particular to ascertain whether the cut-off is 
sharp. For many purposes it will be sufficient to know merely that the 0-spectrum 
begins to fall off more rapidly than as n-4 when n is of order ( E / K ~ ) ~ ,  but for other 
purposes (for example, the calculation of high-order integral moments of the 
0-spectrum) more precise information about the spectrum will be useful. In  
Part 2 of this paper a specific mechanism for the effect of the velocity distribution 
on the Fourier components of 19 is proposed, and from it the unknown form of the 
@-spectrum at wave-numbers beyond the conduction cut-off is determined; no 
further reference to the case v << K will be made here. 

When K is not very different from v, the convection and inertial subranges both 
terminate at wave-numbers near (e/v3)&, and it is known that the u-spectrum 
subsequently falls off sharply owing to the effect of viscosity. The exact forms of 
the two spectra in the neighbourhood of this cut-off wave-number are not known, 
and may be different. It is possible that some exact relation between the two 
spectra exists for the special case v = K ;  however, it does not matter much if the 
precise form of r (n )  near n = (e/v3)4 is not known, since the coincidence of 
conduction and viscosity effects in this neighbourhood makes it virtually certain 
that the cut-off of the &spectrum is sharp (and, in all probability, sharp enough 
to make integral moments of r(n) of all orders converge). 



122 G. K .  Batchelor 

4. The case v >> K :  Lagrangian analysis in terms of Fourier components 
When v 9 K ,  the convection subrange is more extensive than the inertial 

subrange, and, as explained in $2, consists of two distinct parts. In  the part 
defined by L-l < n < (e/v3)&, the result (2.4) holds. In  the part defined by 
(e /v3) i  < n < ( s / v ~ ~ ) f ,  which is a range of wave-numbers lying beyond the viscous 
cut-off of the u-spectrum, the shape of the 8-spectrum is affected indirectly by 
viscosity, in a manner to be established here. It turns out to be possible to do more 
than this and to find the form of r(n) for all n >> (e /v3)i ,  that is, for a range 
embracing the convection subrange B and higher wave-numbers at which 
conduction effects are important. 

The essential fact underlying the analysis that follows is that the spatial rate 
of change of the fluid velocity is approximately uniform over regions with linear 
dimensions not much smaller than (v3/e)f.  In  the inertial subrange the spectrum 
of au,/axj rises slowly (as n$, reaching a maximum near the wave-number (e /v3)f ,  
and falls off sharply at  higher wave-numbers, so that wave-numbers less than 
(~/v3)f make a dominant contribution to the area under this spectrum curve. 
As more direct evidence, it can readily be calculated from the equation for the 
balance of mean-square vorticity, using the hypotheses of Kolmogoroff’s theory 
and with an empirical value of about - 0.3 for the skewness factor of aul/axl, that 

(the repeated indices on the left being summed) for small values of r ;  this shows 
that r does not need to be much less than (v3/e)a for the velocity gradient to be 
approximately uniform over a region of linear dimensions r. If now we imagine 
a material element of fluid of linear dimensions somewhat less than (v3/e)a to be 
chosen and followed in its motion, the internal distortion of this element, and of 
any distribution of 8 contained in it, will be at  any instant approximately a pure 
straining motion. 

Theoretical work does not yet seem to have thrown any light on the degree of 
persistence of this straining motion, but Townsend (1951 b)  has made some 
valuable inferences from observations of the rate at which the temperature of 
small hot fluid elements decreases owing to the combined effect of convective 
distortion and conduction. He finds that the local straining motion is remarkably 
persistent, and that the time-scale of change of the principal rates of strain and of 
change of the directions, relative to the fluid, of the principal axes of the straining 
motion, is large compared with (u/e)* (largeness here presumably implying 
variation as some positive fractional power of the Reynolds number of the 
turbulence), this latter quantity being the only one with the dimensions of time 
which can be formed from the parameters determining the equilibrium range of 
the u-spectrum. That the principal axes of the rate of strain rotate only slowly 
relative to the fluid is also suggested by pictures of the position of portions of 
marked fluid at different instants, like those for two-dimensional motion published 
by Welander (1955); on the whole, the marked fluid is drawn out into long thin 
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streaks, of ever-increasing length, which do not show the small-scale wriggles and 
rapid variations in curvature that would result from local rotation of the principal 
axes of rate of strain relative to the fluid and from consequent local rotation of a 
small part of the streak relative to the remainder. (It is possible that this per- 
sistence of the stretching of a material line is no more than a reflexion of the fact 
that material lines tend to set themselves in the direction of the greatest local 
principal rate of strain (Batchelor 1952), and that if the principal axis of greatest 
rate of strain should rotate relative to the fluid, the material line with which it 
coincided initially would automatically turn and tend to align itself with the new 
direction of the principal axis of greatest rate of strain.) The conclusion, to be 
adopted here, is that the effect of convection on the spatial distribution of 8 within 
a material element of suitably small size is approximately the same as that of a 
pure straining motion of constant magnitude and form relative to the fluid, so far 
as temporal changes of the distribution of 8 on a time scale of order (v/e)# are 
concerned. 

This picture of the convective distortion of small elements of the fluid has 
been used by Townsend (1951a)  in a theory of the form of the u-spectrum 
at very large wave-numbers, and by Batchelor (1952;  see also the review by 
Batchelor & Townsend 1956) in a discussion of the way in which material line 
elements in the fluid are extended and material surface elements are increased 
in area. The use to which it will be put in this and the following section has 
links with both of these earlier investigations, although there are also some 
new features. 

The basic idea of the investigation is to make use of the linearity of the equation 
(1.1) for 8 and to examine the effect of both convection and conduction on each 
Fourier component of the &distribution, the Fourier analysis being carried out 
with respect to axes which move with the fluid locally in translation and rotation 
and which in effect are distorted with the fluid locally. We consider any material 
element of fluid with linear dimensions somewhat less than ( v3/e)f and resolve the 
instantaneous distribution of 8 within this element into its Fourier components. 
This material element moves in translation and rotation and is subjected to a 
pure straining distortion, and at  the end of a finite time it will have a different 
position and orientation and will have experienced a finite pure strain. Only the 
straining of the element affects the distribution of 8 within the element, and this 
straining will be regarded as representative of the effect of fluid convection on the 
Fourier components of 8 with wave-numbers large compared with (e /v3) f .  Of 
course, the way in which the distribution of 8 is continued beyond the material 
element and joins up with other material elements which are being translated, 
rotated and strained also has an influence on Fourier components of 8, but this 
influence may be expected to be important only for components with wave- 
numbers of order (e/v3)' or less (since (v3/e)f is the characteristic length-scale for 
spatial variations of the rotational and straining motions). 

Consider first the changes in an initially sinusoidal variation of 8 throughout 
the material element. We choose Cartesian axes which translate with the element 
and which are always principal axes of the rate of strain of the element. According 
to the approximation explained above, these axes are fixed in the fluid, and the 
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principal rates of strain a, /3, y are constant, for time intervals at least as large as 
(v/a)*. Then, the distribution of 8 is governed by the equation 

ae ae ae ae 
-+ax- +py-+ yx- = Kve, 
at ax ay az 

(4.2) 

and the initial condition is 6' = A, sin (1. x) at t = 0. This equation is satisfied by 

O(x, t )  = A ( t )  sin [m(t) .XI, (4.3) 

with _ -  - - Km2A, dA 
dt 

where m,, m2, m3 are components of m. Thus the solution is 

I K K 
8(x, t )  = A,exp -(m",Z'$+-(mg-l/22)+ -(mg-l:) sin(m.x),  (4.4) [ :a 2P 2Y 

in which 
m, = l,e-*, m2 = l2e-8t, m3 = I,e-yt. (4.5) 

The planes of constant 6 are turned so that the direction of their normal ap- 
proaches asymptotically the direction of the greatest rate of contraction in the 
fluid, and, if a > /3 > y (which implies a > 0, y < 0, since a +/3 + y = 0 by the 
continuity equation) we have 

(provided I, $. 0) as t --f co. The duration of time for which the principal axes 
of strain remain fixed relative to the fluid and a, /3, y remain constant is limited, 
but these asymptotic relations become quite accurate long before t = lo / \  yI 
(except for certain special choices of l,, I ,  and Ply) and since 1 yJ is of order (e/v)fr 
the use of the asymptotic relations as being typical of what is happening to 
Fourier components of 8 is consistent with the approximation described above. 

All Fourier components of the initial distribution of 8 in the material element 
will be changed in this way, and the distribution of 8 at a time t subsequent to the 
initial instant can be obtained by superimposing the changed Fourier com- 
ponents. The distribution of 6' tends towards a one-dimensional form with 
variation only in the direction of the principal axis of least rate of strain. 
Gradients of 0 in the z-direction are made steeper by the convection process (by 
crests of the distribution being squeezed together), but are simultaneously made 
more gradual by conduction effects, and ultimately all the variation of 0 is erased 
by conduction. However, it will be noticed that the smaller the value of K, the 
longer is the time required for erasure of the variations of 0 and the greater are 
the gradients of 6' which are built up in the meantime. 

This information about the way in which the convective distortion converts a 
Fourier component of certain wave-number into one of larger wave-number, the 
magnitude of the coefficient being diminished meanwhile by conduction, can now 
be used to find an expression for the steady &spectrum at wave-numbers large 
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compared with (s/v3)3. This is made possible by the fact that the convective 
modulation of Fourier components of the 8-distribution is entirely one-way as 
soon as the process of alignment of the wave-number vectors is nearly complete; 
@-stuff is transferred wholly to components of larger wave-number. In  the 
neighbourhood of the small wave-number end of the range in which the above 
approximations about the effect of the velocity field on Fourier components of 
8 are valid, this end being given by wave-number magnitude no say, we may sup- 
pose that the level of the 8-spectrum is kept constant by a continual supply of 
02-stuff from lower wave-numbers (the exact mechanism of this supply being 
irrelevant at  the moment). The Fourier components with wave-numbers larger 
than no are derived from those at smaller wave-number by the straining process, 
and the asymptotic relations (4.6) show that the @-stuff which is spread over the 
wave-number range dn', at a wave-number (magnitude) n' at which the alignment 
of the wave-number vectors is nearly complete, is spread over the range ndn'ln' 
at a later stage at which the Fourier component with wave-number n' has been 
distorted to that with wave-number n, and that during the time required for this 
change this amount of @-stuff is reduced, at those places in the fluid where the 
least principal rate of strain has the value 7, by the factor exp [K(n2 - nf2)/y] owing 
to  the action of conduction. The principal rates of strain will not be uniform 
throughout the fluid, so we are obliged to assume that y is an effective average 
value of the least principal rate of strain. The constant level of the 8-spectrum at 
wave-numbers well above no is then given by 

- 

- 

that  is, 

n 
n 

r(n) 7dn '  = r(n') dn' exp 

1 
n 

r(n) cc -exp (5.2); (4.7)" 

the 8-spectrum is also isotropic at these wave-numbers in view of the isotropic 
distribution of the straining motion. 

The dimensional factors in the constant of proportionality in (4.7) can be 
obtained by noticing that when n < ( - y/K)*-and such values of n can exist when 
K / V  is sufficiently small, notwithstanding the existing restrictions on n-the 
exponential factor is approximately constant and r(n) cc n-l. At these values of 
n the effects of conduction are unimportant and the decrease of I? with n is due 
entirely to the spreading of @-stuff over a wider wave-number range by con- 
vective straining. The only parameters relevant to the form of r(n) are then x 

* For simplicity this relation has been obtained from a consideration of the changes 
occurring in one Fourier component whose wave-number vector becomes aligned with the 
direction of the greatest rate of compression. There are, of course, some wave-number 
vectors which take a long time to become aligned (namely, those for which 2, is small in 
(4.5)), and it is desirable to verify that the relation (4.7) is not affected by these untypical 
Fourier components. It is readily established, in fact, that if a continuous isotropic 
8-spectrum with most of the @-stuff a t  wave-numbers with magnitudes near no is maintained 
by transfer from smaller wave-numbers, the steady spectrum produced a t  much larger 
wave-numbers by combined convective straining and conduction has the form (4.7), except 
in the particular case in which p = 7, when the form is different at wave-numbers of 
order ( - Y / K ) ~ .  
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and y ,  and the dimensional part of the proportionality constant is thus x/y. 
Furthermore, the numerical part must have the value - 1 in order that (4.7) 
should be consistent with the identity 

Several estimates of the average value of the least principal rate of strain in the 
fluid have been made (Batchelor & Townsend 1956), and they are all in the 
neighbourhood of - O.~(E/V)~. The final expression for the &spectrum in the wave- 
number range n B (e/v3)* is therefore 

, with y z - 0 . 5  

According to this relation, in the wave-number range designated earlier as 
convection subrange B and specified by (e/v3)% < n < (s/vK~)', the 0-spectrum is 
given by 

It is worth noting that this latter relation could have been predicted (apart from 
a numerical constant) on dimensional grounds right at the beginning, provided 
the thesis adopted here, that the primary effect of the convection on variations 
of 0 on a length-scale small compared with (v3/e)4 is a uniform straining at  a rate 
of order (E/v)*, be granted. The parameters in the constant of proportionality in 
(4.9) are consistent with the need for the relation (4.9) to join smoothly on to the 
relation (2.4) at lower wave-numbers; for the join occurs at values of n near (e/v3)*, 
when both relations show I' to be of order xv%e-%. 

The relation (4.9) describes a comparatively slow rate of decrease of 6' as n 
increases, even slower than that holding at smaller wave-numbers in convection 

subrange A .  The rate of decrease is so slow that r(n)dn does not converge, as 

n --f a, for a fluid such that K = 0-which is to be interpreted as meaning that, 
in a fluid with a very small value of K/v, a statistically steady state for the small- 
scale components of the &distribution can be set up only if there is a sufficiently 
large reservoir of @-stuff in the large-scale components of 8 and if sufficient time 
is available. The amount of @-stuff in convection subrange B, as given by (4.9), is 
of order 

Jon 

x 1' - --log - 
2y K '  

(4.10) 

and this may be larger than the amount in the large-scale components of 8 without 
violating in any way the assumptions on which the analysis is based (although 
@ would then not be a measure of the @-stuff associated with Fourier com- 
ponents with wave-numbers of order L-l). The time required for a stationary 
state to be set up over convection subrange B can be estimated from the time 
required for a Fourier component of 0 with wave-number of order (e/v3)% to be 
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deformed by the straining process into one with wave-number of order ( ~ / v K ' ) &  

and is 
1 v  

Y K  
--log- 

(in agreement with (4 .10)  in view of the definition of x), and this may be larger 
than the time scale of thelarge-scale components of 8 again without inconsistency. 

The relation (4.9) can also be interpreted in terms of the formation of steep 
spatial gradients of 8 in the fluid. If IV81 became infinite (or as near infinite as the 
small conductivity allowed) at a finite number of points in unit volume of the 
fluid as a result of the effect of convection, r(n) would vary as n-'. The diver- 
gence of (V8)' as given by (4 .9 )  is stronger than this, corresponding to the fact that 
convection actually steepens the gradient of 8, and does so persistently, through- 
out typical material elements of fluid; large values of (V81 thus appear, not at 
isolated points, but over a finite fraction of the whole fluid. 

- 

log n 

FIGURE 1. Spectra of 0 and u in the equilibrium range of 
wave-numbers for the case v S K.  

The conduction cut-off given by (4.8) is sharp, and occurs, as expected, at 
wave-numbers of order ( E / v K ~ ) * .  The available information about r(n) in the 
equilibrium range in the case v a K is shown schematically in figure 1. Finally, it 
is worth noting that these results about the form of r(n) beyond the viscous 
cut-off wave-number do not require the Reynolds number of the turbulence 
to be so large that an inertial subrange exists. Whatever the Reynolds number 
of the turbulence, the distortion of sufficiently small material elements of 
fluid will be approximately a pure straining motion. Thus the first part of the 
relation (4.8) will still hold, although the estimate of the straining rate y may 
not be accurate at low Reynolds number. 

5. The case v 9 K :  Eulerian analysis in terms of correlations 
Inasmuch as the analysis presented in the preceding section contains some 

novel features and may not carry immediate conviction, it may be useful to show 
how the same results can be obtained in a quite different way from essentially the 
same assumptions about the effect of the fluid motion on small-scale features of 
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the 8-distribution. This time the analysis involves mean values of products of 0 
and u, and is rather more direct, although the character of the action of con- 
vection on the 8-distribution is not revealed so explicitly. 

The expression for rate of change of the temperature covariance is readily 
found from (1 .1)  to be 

where 8' is written for 8(x + r, t ) ,  and statistical homogeneity of 8 and u has been 
assumed (as is appropriate for the small-scale features of their spatial distribu- 
tions). When the distance r between the points to which 8, u and 8', u' refer is - 
sufficiently small, we have 

au, 
3 a x j 7  

wi M ui+r.-- 

the restriction on r being that it should be somewhat less than (v3/e)' as established 
in the paragraph containing (4.1). Moreover, in accordance with the description 
of the convection process given in the preceding section for this same case v 9 K ,  

there are some values or r ,  at the upper end of this range, for which 8' - 8 is not 
linear in r because the &distribution has a finer structure than the u-distribution. 
We shall therefore employ the approximation (5.2) in (5.1), without introducing 
a similar approximation for 8' - 8. Also, we shall approximate the left-hand side 
of (5.1) by - x, on the understanding (and in view of the results obtained in $4, 
there is need for care in the wording here) that we are investigating a distribution 
of 6' which is stationary so far as the small-scale components are concerned and 
that the rate at which @ and 88' are decreasing is due entirely to a decrease of 
@-stuff in the large-scale components with length-scale L at a rate x (or equi- 
valently that @-stuff is being supplied to these large-scale components at a rate x 
in a case in which the whole of the 8-distribution is statistically stationary). 
Equation (5.1) then becomes 

- 

where V is everywhere a gradient with respect to r alone, x being held 
constant where necessary. 

The next step in the argument is to approximate to the first term on the right- 
hand side of (5.3), with the help of hypotheses about the persistence of the exten- 
sion of material surfaces as in 3 4. The effect of the uniform straining motion which 
exists everywhere in the neighbourhood of a material point in the fluid is to turn 
the local surfaces of constant 8 so that the directions of their normals approach 
that of the least principal rate of strain. Provided the material surfaces on which 
8 is constant continue to be extended-that is, provided the angle between the 
normal to the surfaces of constant 0 and the direction of the least principal rate of 
strain continues to be small-for a time long compared with (vie)# (which is the 
time characteristic of the straining motion and which is therefore a measure of the 
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time required for approximate alignment of the normals to the surfaces of con- 
stant e), as is believed to be so on the basis of the evidence discussed in the 
preceding section, the direction of V(8 - at each point of the fluid and at all 
times will tend to be aligned in the direction of the local least principal rate of 
strain. Of the two contributions to r.Vu, one from rigid rotation of the fluid 
about the point x and one from the pure straining motion, only the latter is 
related statistically to the distribution of 8. The contribution to r . Vu from the 
pure straining motion has a component in the direction of the least principal rate 
of strain equal to ry cos 4, where 4 is the angle between r and the principal axis of 
least rate of strain. 

Principal axis of (least) 
rate of strain at P 

\ -. 
FIGURE 2. To illustrate the uniform straining motion near P and 

its effect on the distribution of 8. 

Thus, if we assume that the process of orientation of V(e  - along a principal 
axis of rate of strain is complete at  all times and positions, as illustrated in figure 2, 
and that the fluctuations in y are a negligible fraction of the mean value, we have 

a(e - e')2 

ar . (r . Vu) . V(# - 8')2 = ry cos 4 IV(8 - 8')21 = yr (5.4) 

These two assumptions are over-simplifications, so that, as in $4, y must be 
regarded as an effective average value of the least principal rate of strain. The 
equation (5 .3)  for the covariance of 8 now becomes 

that is, 

-x = Qyr 

One integration gives 

(5.5) 

9 FluidMech. 5 
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and, from a second, 

When r2 < 4 ~ /  I y 1, this relation reduces to 

aa is required by the definition of x (see (2.3)). At the other extreme, when 
r2 B 4 ~ / l y l  (although r must continue to be suitably small), we have 

As in $4, y can be replaced by its estimated value - O - ~ ( B / V ) ~ ,  in which case the 
asymptotic relation (5.8) becomes - -  

( 0 - O f ) 2  N $)+log @, (5.9) 

valid for (v3/e)4 > r 9 ( v K ~ / B ) ) .  This logarithmic form for (0 - 0‘)z lies between the 
parabolic form (5.7) in the immediate neighbourhood of the origin and a variation 
aa rt at values of r such that L 9 r > ( v3/e)4. 

It remains to show that the result (5.8) is effectively the same as (4.8). This can 
be done by beginning with the identity (see (2.1)) 

On substituting for r (n )  from (4.8), we find 

Kn2 cosnr sinnr a(s - e l12  =QSmexp jy )  nr (-----) n2r2 dn ar Y o  

= [ - 1 - 2K Sm exp (+) sin nrdn] 
Y Yr  0 

thus reproducing (5.6). 

6. Comments on a different model of small-scale variations of 0 in 
the case v 9 K 

In  his theory of the form of the energy spectrum at very large wave-numbers, 
Townsend ( 1 9 5 1 ~ )  made use of the same notion that the action of the whole 
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flow field on small-scale variations of any quantity-vorticity, in his case-is 
primarily to impose a uniform persistent straining motion. The action of a steady 
uniform rate of strain on weak variation of vorticity is to increase the gradient 
of the perturbation vorticity in the direction of the least principal rate of strain 
and to amplify the component of vorticity in the direction of the greatest 
principal rate of strain; this latter effect due to stretching of vortex lines is 
absent in the case of scalar quantities like temperature, but there is otherwise 
a fairly close analogy between the two cases. Townsend made a further assump- 
tion in his work on vorticity, and this has not been employed in the preceding 
discussion of the &spectrum for the case v p K. Since the reasons for not using 
this extra assumption are not self-evident, and since they throw an interesting 
light on the nature of the assumption, a brief comparison of the foregoing results 
with the form they would take with an additional assumption like Townsend’s 
will be given. 

Guided by the observation that small-scale variations of vorticity seem to have 
an uneven spatial distribution, some parts of the fluid being relatively free from 
such variations, Townsend put an intermittent variation into his model by 
assuming that small-scale variations of vorticity exist mainly as isolated steady 
vortex sheets or ‘line vortices’ of small thickness. Each of these sheets or lines 
is steady under the opposing actions of molecular diffusion and stretching of 
vortex lines (the occurrence of two positive principal rates of strain giving rise to 
a vortex sheet, and one positive principal rate of strain to a line vortex, the former 
being the more probable), and the variations of vorticity on length scales small 
compared with ( v3/e).) were supposed to occur in the form of a random distribution 
of such sheets or lines. The sheets or lines were assumed to be separated by 
distances large compared with their thickness (which is of order (v/lyj)*), so that 
amalgamation of sheets or lines which are swept together by the straining motion 
happens only infrequently. The steady distribution of vorticity in a sheet or line 
can readily be calculated in terms of the principal rates of strain and so the 
spectrum of vorticity, and thence of velocity, can be determined at large wave- 
numbers. There is an arbitrary multiplicative constant in the resulting vorticity 
spectrum, representing the product of the number of sheets or lines per unit 
volume and their strength; the value of this constant is determined by the way in 
which inertia forces generate vorticity perturbations on a larger length-scale and 
lies outside the scope of the theory. 

In  exactly the same way one could assume that variations of 6 on a small scale 
occur as randomly distributed, isolated, thin layers in which the distribution of 
8 is steady under the combined actions of molecular diffusion and uniform 
straining. Just as a uniform straining motion with one negative principal rate of 
strain ( y )  converts (asymptotically) an arbitrary transition between two regions 
of uniform (and different) perturbation velocity into a steady vortex sheet of 
thickness of order (v/lyl)a, so it converts an arbitrary transition between two 
regions of uniform 0 into a layer in which the steady distribution of 8 is given by 

ae ae ae - = - -  ax ay 27lK 

9-2 
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A being a constant measuring the size of the jump in 8 across the layer. The 
spectrum of 8 for an array of such layers throughout the fluid, random with 
respect to both position and orientation, then follows as 

where the multiplicative constant equal to the product of A2 and the total layer 
area in unit volume of fluid has been determined from the requirement that the 
total rate of destruction of @-stuff in unit volume of fluid be x. (Note that this 
method of determining the constant is consistent with the model when K < v, 
because the length-scale on which destruction of @-stuff takes place is much 
smaller than the size of regions of the fluid over which the rate of strain is uniform. 
Such a determination of the multiplicative constant is not available in the caae 
of the vorticity spectrum.) This result for the 8-spectrum should be compared 
with (4.8)) which was obtained by considering the changes in all Fourier com- 
ponents of 8 due to the actions of distortion and molecular diffusion and without 
assuming the existence of isolated layers of rapid change of 8. 

It is not difficult to see that (6.2) cannot be correct. The spectrum function 
given by (6.2) is of order XV%/&K+ at the wave-number (e/v3)& marking the transi- 
tion from convection subrange A to convection subrange B, and this is different 
by a factor (v /K)*  from the order of r (at the same wave-number) as determined by 
the relation (2.4) valid in convection subrange A. Another way of stating this 
difficulty in joining the relation (6.2) to the relation valid at smaller wave- 
numbers is to remark that, according to (6.2), the value of r at wave-numbers not 
near the conduction cut-off (that is, for n g ( - Y / K ) $ )  increases indefinitely as 
K -+ 0. The relation (6.2) has this behaviour because the steady rate of 
destruction of @-stuff per unit area of a single layer across which there is a jump 
in 8 is proportional to  K* (the gradients of 8 increase, as K -+ 0, in such a way as to 
keep the local rate of destruction per unit volume of fluid in a layer constant, but 
the thickness of the layer decreases as d), and the same average total rate of 
destruction of @-stuff per unit volume of fluid can be achieved, as K -+ 0,  only by 
an increase in the size of the jump in 8 across the sheet or in the number of sheets 
in unit volume. A dependence of either of these quantities on K is not possible, 
in fact, because the conditions leading to the formation of sheets are supposed to 
be generated by purely convective effects at wave-numbers smaller than those at 
which conduction is important. 

The essential difference between the two theoretical models seems to be that in 
that leading to (6.2) the time-dependent effects accompanying the continual 
reduction in distance between neighbouring sheets and their ultimate amalga- 
mation are ignored, as would be justified if the sheets were usually so far apart as 
to effect the form of I? only at values of n of order (e/v3)& (and this assumption, as 
seen, is open to the objection that the size of the jump in 8 or the density of the 
layers must be supposed to increase as K -+ 0 in order to give the right total rate of 
destruction of @-stuff), whereas in that leading to (4.8) the distribution of 8 is 
always unsteady and the typical form of 8-variation is one in which neighbouring 
crests are continually approaching each other and ‘amalgamating ’. It might be 
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thought that since the model leading to (6.2) incorporates explicitly an inter- 
mittent small-scale variation of 8, objections to the spectral form (6.2) are 
equivalent to objections to an intermittent type of variation. This is not SO, 

however; the model leading to (4.8) is consistent with an intermittent variation of 
0 provided that the region in which VB fluctuates should not be a vanishingly 
small fraction of the total volume as K --f 0, the existence of intermittency of this 
kind having no influence on the result (4.8). It is now pertinent to inquire 
whether Townsend’s assumption that small-scale variations of vorticity occur 
mainly in the form of isolated sheets or lines of concentrated vorticity was 
necessary, but that is another story. 
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